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e gained from the TeraGyroid and SPICE proje
ts has shown that 
o-allo
ation and faulttoleran
e are important requirements for Grid 
omputing. Co-allo
ation is ne
essary for distributedappli
ations that require multiple resour
es that must be reserved before use. Fault toleran
e isimportant be
ause a 
omputational Grid will always have faulty 
omponents and some of thosefaults may be Byzantine. We present HARC, Highly-Available Robust Co-allo
ator, an approa
h tobuilding fault tolerant 
o-allo
ation servi
es. HARC is designed a

ording to the REST ar
hite
turalstyle and uses the Paxos and Paxos Commit algorithms to provide fault toleran
e. HARC/1, animplementation of HARC using HTTP and XML, has been demonstrated at SuperComputing 2005and iGrid 2005.I. INTRODUCTIONIn this paper we dis
uss the importan
e of 
o-allo
ation to Grid 
omputing. We provide someba
kground on the di�
ulties asso
iated with 
o-allo
ation before presenting HARC, Highly-AvailableRobust Co-allo
ator, a fault tolerant approa
h to 
o-allo
ation. The paper also in
ludes a dis
ussion onthe problem of fault toleran
e and Grid 
omputing.We make the 
ase that a 
omputational Grid will al-ways have faulty 
omponents and that some of thosefaults will be Byzantine [26, 27℄. However, we alsodemonstrate that with suitable approa
hes it is stillpossible to make a 
omputational Grid a fault toler-ant system.There are many de�nitions of Grid 
omputing butre
urring themes are: large s
ale or internet s
aledistributed 
omputing and sharing resour
es a
rossmultiple administrative domains. The goal of shar-ing resour
es between organizations dates ba
k to theARPANET [33℄ proje
t and progress towards thatgoal 
an be seen in the development of the Internet,the World Wide Web [22℄ and now 
omputationalGrids. While the goals of the ARPANET proje
tare still relevant today the underlying infrastru
turehas 
hanged, powerful 
omputers have be
ome 
heapand plentiful while high performan
e networks havebe
ome pervasive, presenting developers with a dif-ferent set of 
hallenges and opportunities. We be-lieve that 
o-allo
ation is a new 
hallenge, while thefalling 
ost of 
omponents makes fault toleran
e anew opportunity.Parallel to the evolution of ARPANET throughto Grid 
omputing has been the development of thetheory of distributed systems providing us with adeeper understanding of distributed systems and aset of algorithms for building fault tolerant systems.Representational State Transfer [12℄, REST, is an ar-
hite
tural style for building large s
ale distributedsystems that was used to develop the proto
ols that

make up the World Wide Web. Paxos [28℄ is afault tolerant 
onsensus algorithm that 
an be usedto build highly available systems [31℄. Paxos Com-mit [18℄ is Paxos applied to the distributed transa
-tion 
ommit problem.HARC uses REST and Paxos to provide a sys-tem that is fault tolerant and suitable for a larges
ale distributed system su
h as a 
omputationalGrid. HARC's fo
us on fault toleran
e is uniqueamong approa
hes to designing 
o-allo
ation ser-vi
es [3, 9, 24, 34, 39℄.II. CO-ALLOCATIONRunning distributed appli
ations on a 
omputa-tional Grid often requires that the resour
es neededby the appli
ation are available at the same time.The resour
es may need to be booked (eg A

essGrid nodes) or they may use a bat
h submission sys-tem (eg HPC systems). We de�ne 
o-allo
ation asthe provision of a set of resour
es at the same timeor at some 
o-ordinated set of times. Co-allo
ation
an be a
hieved by making a set of reservations forthe required resour
es with the respe
tive resour
eproviders.Experien
e from the award winning TeraGyroid [7℄and SPICE [23℄ proje
ts has shown that support for
o-allo
ation on 
urrent produ
tion Grids [37, 38℄ isad-ho
 and often requires time 
onsuming dire
t ne-gotiation with the resour
e administrators. The re-sour
es required by TeraGyroid and SPICE in
ludedHPC systems, spe
ial high performan
e networks,high end visualization systems, A

ess Grid nodes,hapti
 devi
es and people. The la
k of 
onvenient
o-allo
ation servi
es prevents the routine use ofthe te
hniques pioneered by TeraGyroid and SPICE.Without 
o-allo
ation 
omputational Grids are lim-ited in the type of appli
ations they 
an support, andso are limited in their potential. Co-allo
ation's im-



2portan
e to Grid 
omputing means that it must bea reliable servi
e.III. FAULT TOLERANCE AND GRIDCOMPUTINGWhatever de�nition of Grid 
omputing is used weare lead to two ines
apable 
on
lusions: a 
omputa-tional Grid will always have faulty 
omponents andsome of those faults will be Byzantine.Computational Grids are internet s
ale distributedsystems, implying large numbers of 
omponents andwide area networks. At this s
ale there will alwaysbe faulty 
omponents.The 
ase that a 
omputational Grid will alwayshave faulty 
omponents is illustrated by the fa
t thaton average over ten per
ent of the daily operationalmonitoring tests, GITS [4℄, run on the UK NationalGrid Servi
e, UK NGS [38℄, report failures. Sin
e thestart of the UK NGS a number of the 
ore nodes havebeen unavailable for days at a time due to plannedand unplanned maintenan
e.Crossing administrative boundaries raises issues oftrust: Can a user trust that a resour
e provider has
on�gured and administrates the resour
e properly?Can a resour
e provider trust that a user will usethe resour
e 
orre
tly? Distributed transa
tions arerarely used between organizations be
ause of a la
kof trust; one organization will not allow another or-ganization to hold a lo
k on its internal databases.Without trust users, resour
e providers and middle-ware developers must be prepared for Byzantine faultbehaviour: when a 
omponent faults but 
ontinuesto operate in an unpredi
table and potentially ma-li
ious way. Although Grid 
omputing supports the
reation of limited trust relationships between orga-nizations through the 
on
ept of the Virtual Organi-zation [14℄ our experien
e has been that Grids exhibitByzantine fault behaviour.To illustrate the point we provide three exam-ples of Byzantine behaviour whi
h we have en
oun-tered. The �rst 
ase involved the UK eS
ien
e Grid'sMDS2 [2, 10℄ hierar
hy. A GRIS [10℄ at a sitewas �rewalled preventing GIIS [10℄ higher up in theMDS2 hierar
hy from querying it. The GRIS 
ontin-ued to report that it was publishing information butwhenever a GIIS attempted to query it the �rewallwould blo
k the 
onne
tion. The GIIS would blo
kwaiting for the GRIS to respond 
ausing the wholeMDS2 hierar
hy to blo
k. The �rewall was raised bythe site's network administrators. The lo
al �rewallon the GRIS server and the GRIS servi
e itself were
on�gured 
orre
tly.The se
ond 
ase involved a job submission nodeon the TeraGrid [37℄. The node 
onsisted of twoservers and utilized a DNS round robin to allo
ate

requests to a node. Unfortunately the DNS entrieswere mis-
on�gured and reported the wrong host-name for one of the nodes 
ausing job submissionsto fail randomly. Lo
al testing at the site did notreveal the problem.The third 
ase involved a resour
e broker that as-signed jobs to 
omputational resour
es. O

asionallya 
omputational resour
e would fail in a Byzantineway: it would a

ept jobs from the resour
e broker,fail to exe
ute the job but report to the resour
ebroker that the job had 
ompleted su

essfully. Theresour
e broker would 
ontinue assigning jobs to thefaulty resour
e until it was drained of jobs.The examples illustrate the importan
e of end-to-end arguments in system design � error re
overyat the appli
ation level is absolutely ne
essary fora reliable system, and any other error dete
tion orre
overy is not logi
ally ne
essary but is stri
tly forperforman
e [35℄. In ea
h 
ase making the individual
omponents more reliable would not have preventedthe problem. Retro�tting reliability to an existingdesign is very di�
ult [30℄.For 
o-allo
ation a very real example of Byzantinefault behaviour o

urs when a resour
e provider a
-
epts a reservation for a resour
e but at the s
heduledtime the user, and possibly the resour
e provider,dis
over the resour
e is unavailable.IV. RESTREST is an ar
hite
tural style for building larges
ale distributed systems. It 
onsists of a set of prin-
iples and design 
onstraints whi
h were used in de-signing the proto
ols that make up the World WideWeb.We provide a brief des
ription of REST and re-fer the reader to the thesis [12℄ for a 
omplete de-s
ription. REST is based on a 
lient-server modelwhi
h supports 
a
hing and where intera
tions be-tween 
lient and server are stateless, all intera
tionstate is stored on the 
lient for server s
alability. The
on
ept of a resour
e is 
entral to REST, resour
eshave identity and anything that 
an have an iden-tity 
an be a resour
e. Resour
es are manipulatedthrough their representations and are networked to-gether through linking � hypermedia is the engineof appli
ation state. Together the last set of 
on-straints 
ombine to make up the prin
iple of uniforminterfa
e. REST also has an optional 
onstraint forthe support of mobile 
ode.HTTP [11℄ is an example of a proto
ol that hasbeen designed a

ording to REST. On the WorldWide Web a resour
e is identi�ed by a URI [6℄ and
lients 
an retrieve a representation of the resour
eusing a HTTP GET. HTTP 
an also supply 
a
hinginformation along with the representation to allow



3intermediaries to 
a
he the representation. The rep-resentation may 
ontain links to other resour
es 
re-ating a network of resour
es. Clients 
an 
hange therepresentation of a resour
e by repla
ing the exist-ing representation with a new one, for example us-ing a HTTP PUT. All resour
es on the World WideWeb have a uniform interfa
e allowing generi
 pie
esof software su
h as web browsers to intera
t withthem. Web servers are also able to send 
ode, forexample JavaS
ript, to the 
lient to be exe
uted inthe browser.V. PROBLEMS OF CO-ALLOCATIONTo illustrate the problems asso
iated with 
o-allo
ation we present two possible approa
hes anddis
uss their short
omings. Most existing solu-tions [3, 9, 24, 34, 39℄ for 
o-allo
ation are basedon variations of these approa
hes.A. One Phase Approa
hIn this approa
h a su

essful reservation is madein a single step.The user sends a booking request to ea
h of theResour
e Managers (RM) requesting a reservation.The RMs either a

ept or reje
t the booking. If oneor more of the RMs reje
ts the booking the user must
an
el any other bookings that have been made. Thisapproa
h has the advantage of being simple but apotential drawba
k is that the user may be 
hargedea
h time he 
an
els a reservation.Supporting reservations prevents a RM from run-ning the optimal workload on a resour
e as it has tos
hedule around the reservations. Even if a reserva-tion is 
an
elled before the s
heduled time it may al-ready have delayed exe
ution of some jobs. RMs may
harge for the use of the resour
e and may 
hargemore for jobs that are submitted via reservation to
ompensate for the loss in throughput. They mayalso 
harge for reservations that are 
an
elled.Any 
harging poli
y is the prerogative of the RM.Not all RMs may 
harge and it is unreasonable tomake any assumptions about or try to mandate a
harging poli
y. A 
o-allo
ation proto
ol should a
-
ommodate the issues asso
iated with 
harging but
annot depend on RMs supporting 
harging.Another potential problem with this approa
harises if one of the RMs reje
ts a booking but theuser does not 
an
el the other reservations that havebeen made. For example the user may fail before hehas had a 
han
e to 
an
el the reservations. Even ifthe user re
overs he may not have stored su�
ientstate before failing to 
an
el the reservations. This

Booking
  Held

Booking
Rejected

State
Initial

Booking
Committed

  

Commit AbortAbortAbort

Abort

FIG. 1: The state�transition diagram for a RM in thetwo phase approa
h. The RM re
eives the booking re-quest message in the initial state. It 
an either reje
t therequest and move to the booking reje
ted state or a

eptthe request and move to the Booking Held state. TheRM waits in the Booking Held state until it re
eives theCommit or Abort message from the TM.is related to the question of trust � the RMs musttrust the user to 
an
el any unwanted reservations.A partial solution is to add an intermediary ser-vi
e that is trusted by the user and RM to 
orre
tlymake and 
an
el reservations as ne
essary. The usersends the set of bookings he requires to the inter-mediary whi
h handles all the intera
tions with theRMs, 
an
elling all the reservations if the purposeds
hedule is una

eptable to any of the RMs. The in-termediary is still a single point of failure unless it
an be repli
ated.B. Two Phase Approa
hIn this approa
h a su

essful reservation is madein two steps.To resolve the problem of RMs 
harging for 
an-
elling a reservation we introdu
e a new state for theRM, Booking Held. The 
lient 
an 
an
el a reserva-tion in the Booking Held state without being 
harged.The approa
h is similar to the two phase 
ommit [17℄algorithm for distributed transa
tions but does notne
essarily have the ACID (Atomi
ity, Consisten
y,Isolation and Durability [19℄) properties asso
iatedwith two phase 
ommit.A pro
ess, the Transa
tion Manager (TM), triesto get a group of RMs to a

ept or reje
t a set ofreservations. In the �rst phase the TM sends thebooking requests to the RMs, the RMs reply with aBooking Held message if the request is a

eptable oran Abort message if the request is una

eptable. Ifall the RMs reply with Booking Held the TM sendsa Commit message to the RMs and the reservationsare 
ommitted. Otherwise the TM sends an Abortmessage to the RMs and no reservations are made.



4Fig. 1 shows the state transitions for the RM in thetwo phase approa
h.Unfortunately the two phase approa
h 
an blo
k.If the TM fails after the �rst phase but before start-ing the se
ond phase, before sending the Commit orAbort message, the RMs are left in the Booking Heldstate until the TM re
overs. While in the BookingHeld state the RMs may be unable to a

ept reser-vations for the s
heduled time slot and the resour
es
heduler may be unable to run the optimal workload on the resour
e.The blo
king nature of the two phase approa
hmay be a

eptable for 
ertain s
enarios dependingon how long the TM is unavailable and providing itre
overs 
orre
tly. To over
ome the blo
king natureof the two phase approa
h requires a three phaseproto
ol [36℄ su
h as Paxos.Another potential problem with the two phase ap-proa
h is that RMs must support the Booking Heldstate. A solution is for RMs that do not support theBooking Held state to move straight to the BookingCommitted state if the booking request is a

eptablein the �rst phase. For the se
ond phase they 
an ig-nore a Commit message and treat an Abort messageas a 
an
ellation of the reservation for whi
h the usermay be 
harged. This a relaxation of the 
onsisten
yproperty of two phase 
ommit.It is also possible to relax the isolation propertyof two phase 
ommit. If a RM re
eives a bookingrequest while in the Booking Held state it 
an reje
tthe request, advising the 
lient that it is holding anun
ommitted booking whi
h may be released in thefuture. This prevents deadlo
k [19℄, when two usersrequest the same resour
es at the same time.The role of the TM 
an be played by the user butshould be 
arried out by a trusted intermediary ser-vi
e.VI. CO-ALLOCATION AND CONSENSUSCo-allo
ation is a 
onsensus problem. Consensusis 
on
erned with how to get a set of pro
esses toagree a value [26℄. Distributed transa
tion 
ommit,of whi
h two phase 
ommit is one approa
h, is aspe
ial 
ase of 
onsensus were all the pro
esses mustagree on either 
ommit or abort for a transa
tion.In the 
ase of 
o-allo
ation the RMs must agree toeither a

ept or reje
t a purposed s
hedule.Consensus is a well understood problem with overtwenty �ve years of resear
h [13, 26�28℄. For exam-ple it has been shown that distributed 
onsensus isimpossible in an asyn
hronous system with a perfe
tnetwork and just one faulty pro
essor [13℄. In anasyn
hronous system it is impossible to di�erentiatebetween a pro
essor that is very slow and one thathas failed. To handle faults requires either fault de-

te
tors or partial syn
hrony. Consensus is an impor-tant problem be
ause it 
an be used to build repli-
as: start a set of deterministi
 state ma
hines in thesame state and use 
onsensus to make them agree onthe order of messages to pro
ess [25, 31℄.Paxos is a well known fault tolerant 
onsensus al-gorithm. We present only a des
ription of its proper-ties and refer the reader to the literature [28, 29, 31℄for a full des
ription of the algorithm. In Paxos aleader pro
ess tries to guide a set of a

eptor pro-
esses to agree a value. Paxos will rea
h 
onsensuseven if messages are lost, delayed or dupli
ated. It
an tolerate multiple simultaneous leaders and anyof the pro
esses, leader or a

eptor, 
an fail and re-
over multiple times. Consensus is rea
hed if there isa single leader for a long enough time during whi
hthe leader 
an talk to a majority of the a

eptor pro-
esses twi
e. It may not terminate if there are alwaystoo many leaders. There is also a Byzantine versionof Paxos [8℄ to handle the 
ase were a

eptors mayhave Byzantine faults.Paxos Commit [18℄ is the Paxos algorithm appliedto the distributed transa
tion 
ommit problem. Ef-fe
tively the transa
tion manager of two phase 
om-mit is repla
ed by a group of a

eptors � if a ma-jority of a

eptors are available for long enough thetransa
tion will 
omplete. Gray and Lamport [18℄showed that Paxos Commit is e�
ient and has thesame message delay as two phase 
ommit for thefault free 
ase. They also showed that two phase
ommit is Paxos Commit with only one a

eptor.Though it may be possible to apply Paxos dire
tlyto the 
o-allo
ation problem by having the RMs a
tas a

eptors we 
hose to use Paxos Commit instead.The advantage Paxos Commit has over using Paxosdire
tly for 
o-allo
ation is that the role played bythe RMs is no more 
omplex than in the two phaseapproa
h. Limiting the role of the RM makes it morea

eptable to resour
e providers and redu
es the pos-sibilities for faulty behaviour from the RM.VII. HARCThe HARC approa
h to 
o-allo
ation is similar tothe two phase approa
h des
ribed in Se
tion II ex-
ept the TM is repla
ed with a set of Paxos a

ep-tors. The user sends a booking request to an a

eptorwho �rst repli
ates the message to the other a

ep-tors using Paxos and then it uses Paxos Commit tomake the reservations with the RMs. HARC termi-nates on
e it has de
ided to 
ommit or abort a set ofreservations. Users and RMs may modify or 
an
elreservations after HARC has terminated, but this isoutside the s
ope of HARC.The aims of HARC are deliberately limited. Itdoes not address the issues of how to 
hoose the op-



5timal s
hedule; how to manage a set of reservationson
e they have been made; how to negotiate qual-ity of servi
e with the resour
e provider or how tosupport 
ompensation me
hanisms when a resour
efails to ful�l a reservation or when a user 
an
els areservation. HARC is designed so that other servi
esand proto
ols 
an be 
ombined with it to solve theseproblems. A. Choosing a S
heduleThe RM advertises the s
hedule when a resour
emay be available through a URI. The user retrievesthe s
hedule using a HTTP GET. The informationretrieved is for guidan
e only, the RM is under noobligation by advertising it. It is the RM's prerog-ative as to how mu
h information it makes avail-able, it may 
hoose not to advertise a s
hedule atall. The RM may supply 
a
hing information alongwith the s
hedule using the 
a
he support fa
ilities ofHTTP. The 
a
hing information 
an indi
ate whenthe s
hedule was last modi�ed or how long the s
hed-ule is good for. The RM may also support 
ondi-tional GET [11℄ so that 
lients do not have to re-trieve and parse the s
hedule if it hasn't 
hangedsin
e the last retrieval. From the s
hedules for allthe resour
es the user 
hooses a suitable time whenthe resour
es he requires might be free.A 
o-s
heduling servi
e for HARC 
ould useHTTP 
onditional GET to maintain a 
a
he of re-sour
e s
hedules from whi
h to 
reate 
o-s
hedulesfor the user. The 
o-s
heduling servi
e would haveto store only soft state making it easy to repli
ate.B. Submitting the Booking RequestThe user 
onstru
ts a booking request whi
h 
on-tains a sub-request for ea
h resour
e that he wants toreserve. The booking request also 
ontains an iden-ti�er 
hosen by the user, the UID. The 
ombinationof the identity of the user and the UID should beglobally unique. The user sends the booking requestto an a

eptor using a HTTP POST. This a

eptorwill a
t as the leader for the whole booking pro
essunless it fails in whi
h 
ase another a

eptor will takeover.The leader pi
ks a transa
tion identi�er, the TID,for the booking request from a set of TIDs that ithas been initially assigned. Ea
h a

eptor has a dif-ferent range of TIDs to 
hoose from to prevent twoa

eptors trying to use the same TID. The a

eptore�e
tively repli
ates the message to the other a

ep-tors by having Paxos agree the TID for the message.This instan
e of Paxos agrees a TID for the 
ombina-tion of the user's identity and the user 
hosen UID.

If the user resends the message to the a

eptor or toany other a

eptor he will re
eive the same TID.The user should 
ontinue submitting the requestto any of the a

eptors until he re
eives a TID �the submission of the booking request is idempotenta
ross all the a

eptors.If a user reuses a UID he will get the TID of theprevious booking request asso
iated with that UID.To avoid reusing a UID the user 
an re
ord all theUIDs he has previously used, however a more pra
-ti
al approa
h is to randomly 
hoose a UID from alarge namespa
e. Two users 
an use the same UIDas it is the 
ombination of the user's identity and theUID that is relevant.The TID is a RequestURI [11℄. The user 
an use aHTTP GET with the TID to retrieve the out
ome ofthe booking request from any of the a

eptors. TheTID is returned to user using the HTTP Lo
ationheader in the response to the POST 
ontaining thebooking request. The HTTP response 
ode is 201indi
ating that a new resour
e has been 
reated. Thea

eptor should return a 303 HTTP response 
ode ifa TID has already been 
hosen for the request toallow the user to dete
t the 
ase when a UID mayhave been reused.C. Making the ReservationsAfter the TID has been 
hosen the leader usesPaxos Commit to make the bookings with the RMs.The booking request is broken down into the sub-requests and the sub-requests are sent to the appro-priate RM using HTTP POST. The TID is also sentto the RM as the Referer HTTP header in the POSTmessage.The RM responds with a URI that will representthe booking lo
al to the RM and whether the book-ing is being held or has been reje
ted. It also broad-
asts this message to all the other a

eptors.As in the Paxos Commit algorithm the a

eptorsde
ide whether the s
hedule 
hosen by the user isa

eptable to all the RMs or has been reje
ted by anyof the RMs. The leader informs ea
h RM whetherto 
ommit or abort the booking using a HTTP PUTon the URI provided by the RM.It is the RM's obligation to dis
over the out
omeof the booking. If the RM does not re
eive the 
om-mit or abort message it should use a HTTP GETwith the TID on any of the a

eptors to dis
over theout
ome of the booking. On
e the a

eptors havemade a de
ision it 
an be 
a
hed by intermediaries.A HTTP GET on the TID returns the out
ome ofthe booking request and a set of links to the reser-vations lo
al to ea
h RM. Detailed information on areservation at a parti
ular RM 
an be retrieved by



6using a HTTP GET on the link asso
iated with thatreservation.The user 
an 
an
el the reservation through theURI provided by the RM and the RM 
an adver-tise that it has 
an
elled the reservation using thesame URI. The user should poll the URI to monitorthe status of the reservation, HTTP HEAD or 
on-ditional GET 
an be used to optimize the polling.There is a question of what happens if a RM de-
ides to unilaterally abort from the Booking Heldstate whi
h is not allowed in two phase 
ommit orPaxos Commit. Sin
e HARC terminates when itde
ides whether a s
hedule should be 
ommitted oraborted we 
an say that the RM 
an
elled the reser-vation after HARC terminated. This is possible be-
ause there is only a partial ordering of events in adistributed system [25℄. The user 
an only �nd outthat the RM 
an
elled the reservation after HARCterminated. The onus is on the user to monitor thereservations on
e they have been made and to dealwith any eventualities that may arise.D. HARC A
tionsHARC supports a set of a
tions for making andmanipulating reservations: Make, Modify, Move andCan
el. Make is used to 
reate a new reserva-tion, Modify to 
hange an existing reservation (egto 
hange the number of CPUs requested), Move to
hange the time of a reservation and Can
el to 
an-
el a reservation. A booking request 
an 
ontain amixture of a
tions and HARC will de
ide whetherto 
ommit or abort all of the a
tions. The HARCa
tions provide the user with �exibility for dealingwith the 
ase of a RM 
an
elling a reservation, forexample he 
ould make a new reservation on anotherresour
e at a di�erent time and move the existingreservations to the new time.A third party servi
e 
ould monitor reservations onthe behalf of the user and deal with any eventualitiesthat arise using the HARC a
tions in a

ordan
e tosome poli
y provided by the user.E. Se
urityThe 
omplete booking request sent to the a

eptoris digitally signed [5℄ by the user with a X.509 [1℄ 
er-ti�
ate. The a

eptors use the signature to dis
overthe identity of the user. Individual sub-requests arealso digitally signed by the user so that the RMs
an verify that the sub-request 
ame from an au-thorized user. The a

eptors also digitally sign thesub-requests before passing them to the RMs so thatthe RM 
an verify that the sub-request 
ame froma trusted a

eptor. If required a sub-request 
an be

digitally en
rypted [21℄ by the user so that the a
-
eptors 
annot read it.A HTTP GET using the TID returns only the out-
ome of a booking request and a set of links to theindividual bookings so there is no requirement for a
-
eptors to provide a

ess 
ontrol to this information.The individual RMs 
ontrol a

ess to any detailedinformation on reservations they hold.VIII. HARC AVAILABILITYHARC has the same fault toleran
e properties asPaxos Commit whi
h means it will progress if a ma-jority of a

eptors are available. If a majority ofa

eptors are not available HARC will blo
k until amajority is restored, sin
e blo
king is una

eptablewe de�ne this as HARC failing. To 
al
ulate theMTTF for HARC we use the notation and de�ni-tions from [19℄.The probability that an a

eptor fails is 1/MTTFwere MTTF is the Mean Time To Failure of the a
-
eptor. The probability that an a

eptor is in a failedstate is approximately MTTR/MTTF, were MTTRis the Mean Time To Repair of the a

eptor.Given 2F + 1 a

eptors, the probability thatHARC blo
ks is the probability that F a

eptors arein the failed state and another a

eptors fails.The probability that F out of the 2F +1 a

eptorsare in the failed state is:
(2F + 1)!

F !(F + 1)!

(

MTTR

MTTF

)F (1)The probability that one of the remaining F + 1 a
-
eptors fails is:
(F + 1)

(

1

MTTF

) (2)The probability that HARC will blo
k is the produ
tof (1) and (2):
(2F + 1)!

(F !)2

(

MTTRF

MTTFF+1

) (3)The MTTF for HARC is the re
ipro
al of (3):
MTTFHARC ≈

(F !)2

(2F + 1)!

(

MTTFF+1

MTTRF

) (4)Using 5 a

eptors, F = 2, ea
h with a MTTF of 120days and a MTTR of 1 day, MTTFHARC is approx-imately 57,600 days, or 160 years.IX. BYZANTINE FAULTS AND HARCHARC is based on Paxos Commit whi
h assumesthe a

eptors do not have Byzantine faults but whi
h
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an happen in a Grid environment. We believe thata

eptors 
an be implemented as fail�stop [19℄ ser-vi
es that are provided as part of a Virtual Organi-zation's role of 
reating trust between organizations.Provision of trusted servi
es is one way of realizingthe Virtual Organization 
on
ept. If Byzantine faulttoleran
e is ne
essary then Byzantine Paxos [8℄ 
ouldbe used in HARC.If a HARC a

eptor does have a Byzantine fault it
annot make a reservation without a signed requestfrom a user. HARC has been designed to deal withByzantine fault behaviour from users and RMs.No 
o-allo
ation proto
ol 
an guarantee that thereserved resour
es will a
tually be available at thes
heduled time. HARC is a fault tolerant proto
olfor making a set of reservations, it does not attemptto make any guarantees on
e the reservations havebeen made. The user may be able to deal with thesituation were a resour
e is unavailable at the s
hed-uled time by booking extra resour
es that 
an a
t asba
kup. This is an appli
ation spe
i�
 solution andagain illustrates the importan
e of end-to-end argu-ments [35℄. HARC provides a fault tolerant servi
eto the user but fault toleran
e is still ne
essary atthe appli
ation level.X. HARC/1HARC/1, an implementation of HARC, has beensu

essfully demonstrated at SuperComputing 2005and iGrid 2005 [20℄ where it was used to 
o-s
heduleten 
ompute and two network resour
es. HARC/1is implemented using Java with sample RMs imple-mented in Perl. HARC/1 is available at http://www.

t.lsu.edu/personal/ma
laren/CoS
hed.XI. CONCLUSIONAs the size of a distributed system in
reases so todoes the probablity that some 
omponent in the sys-tem is faulty. However, if a fault tolerant approa
his applied then in
reasing the size of the system 
an

mean that the reliability of the overall system im-proves. Just as Beowulf systems built out of 
om-modity 
omponents have displa
ed expensive super-
omputers so 
lusters of PCs are displa
ing expensivemainframe type systems [15℄. HARC demonstrateshow important servi
es 
an be made fault tolerantto 
reate a fault tolerant Grid.HARC has been demonstrated to be a se
ure, faulttolerant approa
h to building 
o-allo
ation servi
es.It has also been shown that the user and RM roles inHARC are simple. The state�transitions for the RMin HARC are the same as for the two phase approa
hillustrated in Fig. 1. The only extra requirementfor the RM over the two phase approa
h is that itmust broad
ast a 
opy of its Booking Held or Abortmessage to all a

eptors.The use of HTTP 
ontributes to the simpli
ity ofHARC. HTTP is a well understood appli
ation pro-to
ol with strong library support in many program-ming languages. HARC demonstrates through itsuse of HTTP and URIs the e�e
tiveness of REST asan approa
h to developing Grid servi
es.HARC's fun
tionality 
an be extended by addingother servi
es, for example to support 
o-s
hedulingand reservation monitoring. Extending fun
tionalityby adding servi
es, rather than modifying existingservi
es, indi
ates good design and a s
alable systemin a

ordan
e to REST.The opaqueness of the sub-requests to the a

ep-tors means that HARC has the potential to be usedfor something other than 
o-allo
ation. For examplea HARC implementation 
ould be used as an imple-mentation of Paxos Commit to support distributedtransa
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