
Co-Alloation, Fault Tolerane and Grid ComputingJon MaLaren,1 Mark M Keown,2 and Stephen Pikles21 Center for Computation and Tehnology, Louisiana State University,Baton Rouge, Louisiana 70803, United States.2 Manhester Computing, The University of Manhester, Oxford Road, Manhester M13 9PL.Experiene gained from the TeraGyroid and SPICE projets has shown that o-alloation and faulttolerane are important requirements for Grid omputing. Co-alloation is neessary for distributedappliations that require multiple resoures that must be reserved before use. Fault tolerane isimportant beause a omputational Grid will always have faulty omponents and some of thosefaults may be Byzantine. We present HARC, Highly-Available Robust Co-alloator, an approah tobuilding fault tolerant o-alloation servies. HARC is designed aording to the REST arhiteturalstyle and uses the Paxos and Paxos Commit algorithms to provide fault tolerane. HARC/1, animplementation of HARC using HTTP and XML, has been demonstrated at SuperComputing 2005and iGrid 2005.I. INTRODUCTIONIn this paper we disuss the importane of o-alloation to Grid omputing. We provide somebakground on the di�ulties assoiated with o-alloation before presenting HARC, Highly-AvailableRobust Co-alloator, a fault tolerant approah to o-alloation. The paper also inludes a disussion onthe problem of fault tolerane and Grid omputing.We make the ase that a omputational Grid will al-ways have faulty omponents and that some of thosefaults will be Byzantine [26, 27℄. However, we alsodemonstrate that with suitable approahes it is stillpossible to make a omputational Grid a fault toler-ant system.There are many de�nitions of Grid omputing butreurring themes are: large sale or internet saledistributed omputing and sharing resoures arossmultiple administrative domains. The goal of shar-ing resoures between organizations dates bak to theARPANET [33℄ projet and progress towards thatgoal an be seen in the development of the Internet,the World Wide Web [22℄ and now omputationalGrids. While the goals of the ARPANET projetare still relevant today the underlying infrastruturehas hanged, powerful omputers have beome heapand plentiful while high performane networks havebeome pervasive, presenting developers with a dif-ferent set of hallenges and opportunities. We be-lieve that o-alloation is a new hallenge, while thefalling ost of omponents makes fault tolerane anew opportunity.Parallel to the evolution of ARPANET throughto Grid omputing has been the development of thetheory of distributed systems providing us with adeeper understanding of distributed systems and aset of algorithms for building fault tolerant systems.Representational State Transfer [12℄, REST, is an ar-hitetural style for building large sale distributedsystems that was used to develop the protools that

make up the World Wide Web. Paxos [28℄ is afault tolerant onsensus algorithm that an be usedto build highly available systems [31℄. Paxos Com-mit [18℄ is Paxos applied to the distributed transa-tion ommit problem.HARC uses REST and Paxos to provide a sys-tem that is fault tolerant and suitable for a largesale distributed system suh as a omputationalGrid. HARC's fous on fault tolerane is uniqueamong approahes to designing o-alloation ser-vies [3, 9, 24, 34, 39℄.II. CO-ALLOCATIONRunning distributed appliations on a omputa-tional Grid often requires that the resoures neededby the appliation are available at the same time.The resoures may need to be booked (eg AessGrid nodes) or they may use a bath submission sys-tem (eg HPC systems). We de�ne o-alloation asthe provision of a set of resoures at the same timeor at some o-ordinated set of times. Co-alloationan be ahieved by making a set of reservations forthe required resoures with the respetive resoureproviders.Experiene from the award winning TeraGyroid [7℄and SPICE [23℄ projets has shown that support foro-alloation on urrent prodution Grids [37, 38℄ isad-ho and often requires time onsuming diret ne-gotiation with the resoure administrators. The re-soures required by TeraGyroid and SPICE inludedHPC systems, speial high performane networks,high end visualization systems, Aess Grid nodes,hapti devies and people. The lak of onveniento-alloation servies prevents the routine use ofthe tehniques pioneered by TeraGyroid and SPICE.Without o-alloation omputational Grids are lim-ited in the type of appliations they an support, andso are limited in their potential. Co-alloation's im-



2portane to Grid omputing means that it must bea reliable servie.III. FAULT TOLERANCE AND GRIDCOMPUTINGWhatever de�nition of Grid omputing is used weare lead to two inesapable onlusions: a omputa-tional Grid will always have faulty omponents andsome of those faults will be Byzantine.Computational Grids are internet sale distributedsystems, implying large numbers of omponents andwide area networks. At this sale there will alwaysbe faulty omponents.The ase that a omputational Grid will alwayshave faulty omponents is illustrated by the fat thaton average over ten perent of the daily operationalmonitoring tests, GITS [4℄, run on the UK NationalGrid Servie, UK NGS [38℄, report failures. Sine thestart of the UK NGS a number of the ore nodes havebeen unavailable for days at a time due to plannedand unplanned maintenane.Crossing administrative boundaries raises issues oftrust: Can a user trust that a resoure provider hason�gured and administrates the resoure properly?Can a resoure provider trust that a user will usethe resoure orretly? Distributed transations arerarely used between organizations beause of a lakof trust; one organization will not allow another or-ganization to hold a lok on its internal databases.Without trust users, resoure providers and middle-ware developers must be prepared for Byzantine faultbehaviour: when a omponent faults but ontinuesto operate in an unpreditable and potentially ma-liious way. Although Grid omputing supports thereation of limited trust relationships between orga-nizations through the onept of the Virtual Organi-zation [14℄ our experiene has been that Grids exhibitByzantine fault behaviour.To illustrate the point we provide three exam-ples of Byzantine behaviour whih we have enoun-tered. The �rst ase involved the UK eSiene Grid'sMDS2 [2, 10℄ hierarhy. A GRIS [10℄ at a sitewas �rewalled preventing GIIS [10℄ higher up in theMDS2 hierarhy from querying it. The GRIS ontin-ued to report that it was publishing information butwhenever a GIIS attempted to query it the �rewallwould blok the onnetion. The GIIS would blokwaiting for the GRIS to respond ausing the wholeMDS2 hierarhy to blok. The �rewall was raised bythe site's network administrators. The loal �rewallon the GRIS server and the GRIS servie itself wereon�gured orretly.The seond ase involved a job submission nodeon the TeraGrid [37℄. The node onsisted of twoservers and utilized a DNS round robin to alloate

requests to a node. Unfortunately the DNS entrieswere mis-on�gured and reported the wrong host-name for one of the nodes ausing job submissionsto fail randomly. Loal testing at the site did notreveal the problem.The third ase involved a resoure broker that as-signed jobs to omputational resoures. Oasionallya omputational resoure would fail in a Byzantineway: it would aept jobs from the resoure broker,fail to exeute the job but report to the resourebroker that the job had ompleted suessfully. Theresoure broker would ontinue assigning jobs to thefaulty resoure until it was drained of jobs.The examples illustrate the importane of end-to-end arguments in system design � error reoveryat the appliation level is absolutely neessary fora reliable system, and any other error detetion orreovery is not logially neessary but is stritly forperformane [35℄. In eah ase making the individualomponents more reliable would not have preventedthe problem. Retro�tting reliability to an existingdesign is very di�ult [30℄.For o-alloation a very real example of Byzantinefault behaviour ours when a resoure provider a-epts a reservation for a resoure but at the sheduledtime the user, and possibly the resoure provider,disover the resoure is unavailable.IV. RESTREST is an arhitetural style for building largesale distributed systems. It onsists of a set of prin-iples and design onstraints whih were used in de-signing the protools that make up the World WideWeb.We provide a brief desription of REST and re-fer the reader to the thesis [12℄ for a omplete de-sription. REST is based on a lient-server modelwhih supports ahing and where interations be-tween lient and server are stateless, all interationstate is stored on the lient for server salability. Theonept of a resoure is entral to REST, resoureshave identity and anything that an have an iden-tity an be a resoure. Resoures are manipulatedthrough their representations and are networked to-gether through linking � hypermedia is the engineof appliation state. Together the last set of on-straints ombine to make up the priniple of uniforminterfae. REST also has an optional onstraint forthe support of mobile ode.HTTP [11℄ is an example of a protool that hasbeen designed aording to REST. On the WorldWide Web a resoure is identi�ed by a URI [6℄ andlients an retrieve a representation of the resoureusing a HTTP GET. HTTP an also supply ahinginformation along with the representation to allow



3intermediaries to ahe the representation. The rep-resentation may ontain links to other resoures re-ating a network of resoures. Clients an hange therepresentation of a resoure by replaing the exist-ing representation with a new one, for example us-ing a HTTP PUT. All resoures on the World WideWeb have a uniform interfae allowing generi pieesof software suh as web browsers to interat withthem. Web servers are also able to send ode, forexample JavaSript, to the lient to be exeuted inthe browser.V. PROBLEMS OF CO-ALLOCATIONTo illustrate the problems assoiated with o-alloation we present two possible approahes anddisuss their shortomings. Most existing solu-tions [3, 9, 24, 34, 39℄ for o-alloation are basedon variations of these approahes.A. One Phase ApproahIn this approah a suessful reservation is madein a single step.The user sends a booking request to eah of theResoure Managers (RM) requesting a reservation.The RMs either aept or rejet the booking. If oneor more of the RMs rejets the booking the user mustanel any other bookings that have been made. Thisapproah has the advantage of being simple but apotential drawbak is that the user may be hargedeah time he anels a reservation.Supporting reservations prevents a RM from run-ning the optimal workload on a resoure as it has toshedule around the reservations. Even if a reserva-tion is anelled before the sheduled time it may al-ready have delayed exeution of some jobs. RMs mayharge for the use of the resoure and may hargemore for jobs that are submitted via reservation toompensate for the loss in throughput. They mayalso harge for reservations that are anelled.Any harging poliy is the prerogative of the RM.Not all RMs may harge and it is unreasonable tomake any assumptions about or try to mandate aharging poliy. A o-alloation protool should a-ommodate the issues assoiated with harging butannot depend on RMs supporting harging.Another potential problem with this approaharises if one of the RMs rejets a booking but theuser does not anel the other reservations that havebeen made. For example the user may fail before hehas had a hane to anel the reservations. Even ifthe user reovers he may not have stored su�ientstate before failing to anel the reservations. This
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FIG. 1: The state�transition diagram for a RM in thetwo phase approah. The RM reeives the booking re-quest message in the initial state. It an either rejet therequest and move to the booking rejeted state or aeptthe request and move to the Booking Held state. TheRM waits in the Booking Held state until it reeives theCommit or Abort message from the TM.is related to the question of trust � the RMs musttrust the user to anel any unwanted reservations.A partial solution is to add an intermediary ser-vie that is trusted by the user and RM to orretlymake and anel reservations as neessary. The usersends the set of bookings he requires to the inter-mediary whih handles all the interations with theRMs, anelling all the reservations if the purposedshedule is unaeptable to any of the RMs. The in-termediary is still a single point of failure unless itan be repliated.B. Two Phase ApproahIn this approah a suessful reservation is madein two steps.To resolve the problem of RMs harging for an-elling a reservation we introdue a new state for theRM, Booking Held. The lient an anel a reserva-tion in the Booking Held state without being harged.The approah is similar to the two phase ommit [17℄algorithm for distributed transations but does notneessarily have the ACID (Atomiity, Consisteny,Isolation and Durability [19℄) properties assoiatedwith two phase ommit.A proess, the Transation Manager (TM), triesto get a group of RMs to aept or rejet a set ofreservations. In the �rst phase the TM sends thebooking requests to the RMs, the RMs reply with aBooking Held message if the request is aeptable oran Abort message if the request is unaeptable. Ifall the RMs reply with Booking Held the TM sendsa Commit message to the RMs and the reservationsare ommitted. Otherwise the TM sends an Abortmessage to the RMs and no reservations are made.



4Fig. 1 shows the state transitions for the RM in thetwo phase approah.Unfortunately the two phase approah an blok.If the TM fails after the �rst phase but before start-ing the seond phase, before sending the Commit orAbort message, the RMs are left in the Booking Heldstate until the TM reovers. While in the BookingHeld state the RMs may be unable to aept reser-vations for the sheduled time slot and the resouresheduler may be unable to run the optimal workload on the resoure.The bloking nature of the two phase approahmay be aeptable for ertain senarios dependingon how long the TM is unavailable and providing itreovers orretly. To overome the bloking natureof the two phase approah requires a three phaseprotool [36℄ suh as Paxos.Another potential problem with the two phase ap-proah is that RMs must support the Booking Heldstate. A solution is for RMs that do not support theBooking Held state to move straight to the BookingCommitted state if the booking request is aeptablein the �rst phase. For the seond phase they an ig-nore a Commit message and treat an Abort messageas a anellation of the reservation for whih the usermay be harged. This a relaxation of the onsistenyproperty of two phase ommit.It is also possible to relax the isolation propertyof two phase ommit. If a RM reeives a bookingrequest while in the Booking Held state it an rejetthe request, advising the lient that it is holding anunommitted booking whih may be released in thefuture. This prevents deadlok [19℄, when two usersrequest the same resoures at the same time.The role of the TM an be played by the user butshould be arried out by a trusted intermediary ser-vie.VI. CO-ALLOCATION AND CONSENSUSCo-alloation is a onsensus problem. Consensusis onerned with how to get a set of proesses toagree a value [26℄. Distributed transation ommit,of whih two phase ommit is one approah, is aspeial ase of onsensus were all the proesses mustagree on either ommit or abort for a transation.In the ase of o-alloation the RMs must agree toeither aept or rejet a purposed shedule.Consensus is a well understood problem with overtwenty �ve years of researh [13, 26�28℄. For exam-ple it has been shown that distributed onsensus isimpossible in an asynhronous system with a perfetnetwork and just one faulty proessor [13℄. In anasynhronous system it is impossible to di�erentiatebetween a proessor that is very slow and one thathas failed. To handle faults requires either fault de-

tetors or partial synhrony. Consensus is an impor-tant problem beause it an be used to build repli-as: start a set of deterministi state mahines in thesame state and use onsensus to make them agree onthe order of messages to proess [25, 31℄.Paxos is a well known fault tolerant onsensus al-gorithm. We present only a desription of its proper-ties and refer the reader to the literature [28, 29, 31℄for a full desription of the algorithm. In Paxos aleader proess tries to guide a set of aeptor pro-esses to agree a value. Paxos will reah onsensuseven if messages are lost, delayed or dupliated. Itan tolerate multiple simultaneous leaders and anyof the proesses, leader or aeptor, an fail and re-over multiple times. Consensus is reahed if there isa single leader for a long enough time during whihthe leader an talk to a majority of the aeptor pro-esses twie. It may not terminate if there are alwaystoo many leaders. There is also a Byzantine versionof Paxos [8℄ to handle the ase were aeptors mayhave Byzantine faults.Paxos Commit [18℄ is the Paxos algorithm appliedto the distributed transation ommit problem. Ef-fetively the transation manager of two phase om-mit is replaed by a group of aeptors � if a ma-jority of aeptors are available for long enough thetransation will omplete. Gray and Lamport [18℄showed that Paxos Commit is e�ient and has thesame message delay as two phase ommit for thefault free ase. They also showed that two phaseommit is Paxos Commit with only one aeptor.Though it may be possible to apply Paxos diretlyto the o-alloation problem by having the RMs atas aeptors we hose to use Paxos Commit instead.The advantage Paxos Commit has over using Paxosdiretly for o-alloation is that the role played bythe RMs is no more omplex than in the two phaseapproah. Limiting the role of the RM makes it moreaeptable to resoure providers and redues the pos-sibilities for faulty behaviour from the RM.VII. HARCThe HARC approah to o-alloation is similar tothe two phase approah desribed in Setion II ex-ept the TM is replaed with a set of Paxos aep-tors. The user sends a booking request to an aeptorwho �rst repliates the message to the other aep-tors using Paxos and then it uses Paxos Commit tomake the reservations with the RMs. HARC termi-nates one it has deided to ommit or abort a set ofreservations. Users and RMs may modify or anelreservations after HARC has terminated, but this isoutside the sope of HARC.The aims of HARC are deliberately limited. Itdoes not address the issues of how to hoose the op-



5timal shedule; how to manage a set of reservationsone they have been made; how to negotiate qual-ity of servie with the resoure provider or how tosupport ompensation mehanisms when a resourefails to ful�l a reservation or when a user anels areservation. HARC is designed so that other serviesand protools an be ombined with it to solve theseproblems. A. Choosing a SheduleThe RM advertises the shedule when a resouremay be available through a URI. The user retrievesthe shedule using a HTTP GET. The informationretrieved is for guidane only, the RM is under noobligation by advertising it. It is the RM's prerog-ative as to how muh information it makes avail-able, it may hoose not to advertise a shedule atall. The RM may supply ahing information alongwith the shedule using the ahe support failities ofHTTP. The ahing information an indiate whenthe shedule was last modi�ed or how long the shed-ule is good for. The RM may also support ondi-tional GET [11℄ so that lients do not have to re-trieve and parse the shedule if it hasn't hangedsine the last retrieval. From the shedules for allthe resoures the user hooses a suitable time whenthe resoures he requires might be free.A o-sheduling servie for HARC ould useHTTP onditional GET to maintain a ahe of re-soure shedules from whih to reate o-shedulesfor the user. The o-sheduling servie would haveto store only soft state making it easy to repliate.B. Submitting the Booking RequestThe user onstruts a booking request whih on-tains a sub-request for eah resoure that he wants toreserve. The booking request also ontains an iden-ti�er hosen by the user, the UID. The ombinationof the identity of the user and the UID should beglobally unique. The user sends the booking requestto an aeptor using a HTTP POST. This aeptorwill at as the leader for the whole booking proessunless it fails in whih ase another aeptor will takeover.The leader piks a transation identi�er, the TID,for the booking request from a set of TIDs that ithas been initially assigned. Eah aeptor has a dif-ferent range of TIDs to hoose from to prevent twoaeptors trying to use the same TID. The aeptore�etively repliates the message to the other aep-tors by having Paxos agree the TID for the message.This instane of Paxos agrees a TID for the ombina-tion of the user's identity and the user hosen UID.

If the user resends the message to the aeptor or toany other aeptor he will reeive the same TID.The user should ontinue submitting the requestto any of the aeptors until he reeives a TID �the submission of the booking request is idempotentaross all the aeptors.If a user reuses a UID he will get the TID of theprevious booking request assoiated with that UID.To avoid reusing a UID the user an reord all theUIDs he has previously used, however a more pra-tial approah is to randomly hoose a UID from alarge namespae. Two users an use the same UIDas it is the ombination of the user's identity and theUID that is relevant.The TID is a RequestURI [11℄. The user an use aHTTP GET with the TID to retrieve the outome ofthe booking request from any of the aeptors. TheTID is returned to user using the HTTP Loationheader in the response to the POST ontaining thebooking request. The HTTP response ode is 201indiating that a new resoure has been reated. Theaeptor should return a 303 HTTP response ode ifa TID has already been hosen for the request toallow the user to detet the ase when a UID mayhave been reused.C. Making the ReservationsAfter the TID has been hosen the leader usesPaxos Commit to make the bookings with the RMs.The booking request is broken down into the sub-requests and the sub-requests are sent to the appro-priate RM using HTTP POST. The TID is also sentto the RM as the Referer HTTP header in the POSTmessage.The RM responds with a URI that will representthe booking loal to the RM and whether the book-ing is being held or has been rejeted. It also broad-asts this message to all the other aeptors.As in the Paxos Commit algorithm the aeptorsdeide whether the shedule hosen by the user isaeptable to all the RMs or has been rejeted by anyof the RMs. The leader informs eah RM whetherto ommit or abort the booking using a HTTP PUTon the URI provided by the RM.It is the RM's obligation to disover the outomeof the booking. If the RM does not reeive the om-mit or abort message it should use a HTTP GETwith the TID on any of the aeptors to disover theoutome of the booking. One the aeptors havemade a deision it an be ahed by intermediaries.A HTTP GET on the TID returns the outome ofthe booking request and a set of links to the reser-vations loal to eah RM. Detailed information on areservation at a partiular RM an be retrieved by



6using a HTTP GET on the link assoiated with thatreservation.The user an anel the reservation through theURI provided by the RM and the RM an adver-tise that it has anelled the reservation using thesame URI. The user should poll the URI to monitorthe status of the reservation, HTTP HEAD or on-ditional GET an be used to optimize the polling.There is a question of what happens if a RM de-ides to unilaterally abort from the Booking Heldstate whih is not allowed in two phase ommit orPaxos Commit. Sine HARC terminates when itdeides whether a shedule should be ommitted oraborted we an say that the RM anelled the reser-vation after HARC terminated. This is possible be-ause there is only a partial ordering of events in adistributed system [25℄. The user an only �nd outthat the RM anelled the reservation after HARCterminated. The onus is on the user to monitor thereservations one they have been made and to dealwith any eventualities that may arise.D. HARC AtionsHARC supports a set of ations for making andmanipulating reservations: Make, Modify, Move andCanel. Make is used to reate a new reserva-tion, Modify to hange an existing reservation (egto hange the number of CPUs requested), Move tohange the time of a reservation and Canel to an-el a reservation. A booking request an ontain amixture of ations and HARC will deide whetherto ommit or abort all of the ations. The HARCations provide the user with �exibility for dealingwith the ase of a RM anelling a reservation, forexample he ould make a new reservation on anotherresoure at a di�erent time and move the existingreservations to the new time.A third party servie ould monitor reservations onthe behalf of the user and deal with any eventualitiesthat arise using the HARC ations in aordane tosome poliy provided by the user.E. SeurityThe omplete booking request sent to the aeptoris digitally signed [5℄ by the user with a X.509 [1℄ er-ti�ate. The aeptors use the signature to disoverthe identity of the user. Individual sub-requests arealso digitally signed by the user so that the RMsan verify that the sub-request ame from an au-thorized user. The aeptors also digitally sign thesub-requests before passing them to the RMs so thatthe RM an verify that the sub-request ame froma trusted aeptor. If required a sub-request an be

digitally enrypted [21℄ by the user so that the a-eptors annot read it.A HTTP GET using the TID returns only the out-ome of a booking request and a set of links to theindividual bookings so there is no requirement for a-eptors to provide aess ontrol to this information.The individual RMs ontrol aess to any detailedinformation on reservations they hold.VIII. HARC AVAILABILITYHARC has the same fault tolerane properties asPaxos Commit whih means it will progress if a ma-jority of aeptors are available. If a majority ofaeptors are not available HARC will blok until amajority is restored, sine bloking is unaeptablewe de�ne this as HARC failing. To alulate theMTTF for HARC we use the notation and de�ni-tions from [19℄.The probability that an aeptor fails is 1/MTTFwere MTTF is the Mean Time To Failure of the a-eptor. The probability that an aeptor is in a failedstate is approximately MTTR/MTTF, were MTTRis the Mean Time To Repair of the aeptor.Given 2F + 1 aeptors, the probability thatHARC bloks is the probability that F aeptors arein the failed state and another aeptors fails.The probability that F out of the 2F +1 aeptorsare in the failed state is:
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) (4)Using 5 aeptors, F = 2, eah with a MTTF of 120days and a MTTR of 1 day, MTTFHARC is approx-imately 57,600 days, or 160 years.IX. BYZANTINE FAULTS AND HARCHARC is based on Paxos Commit whih assumesthe aeptors do not have Byzantine faults but whih



7an happen in a Grid environment. We believe thataeptors an be implemented as fail�stop [19℄ ser-vies that are provided as part of a Virtual Organi-zation's role of reating trust between organizations.Provision of trusted servies is one way of realizingthe Virtual Organization onept. If Byzantine faulttolerane is neessary then Byzantine Paxos [8℄ ouldbe used in HARC.If a HARC aeptor does have a Byzantine fault itannot make a reservation without a signed requestfrom a user. HARC has been designed to deal withByzantine fault behaviour from users and RMs.No o-alloation protool an guarantee that thereserved resoures will atually be available at thesheduled time. HARC is a fault tolerant protoolfor making a set of reservations, it does not attemptto make any guarantees one the reservations havebeen made. The user may be able to deal with thesituation were a resoure is unavailable at the shed-uled time by booking extra resoures that an at asbakup. This is an appliation spei� solution andagain illustrates the importane of end-to-end argu-ments [35℄. HARC provides a fault tolerant servieto the user but fault tolerane is still neessary atthe appliation level.X. HARC/1HARC/1, an implementation of HARC, has beensuessfully demonstrated at SuperComputing 2005and iGrid 2005 [20℄ where it was used to o-sheduleten ompute and two network resoures. HARC/1is implemented using Java with sample RMs imple-mented in Perl. HARC/1 is available at http://www.t.lsu.edu/personal/malaren/CoShed.XI. CONCLUSIONAs the size of a distributed system inreases so todoes the probablity that some omponent in the sys-tem is faulty. However, if a fault tolerant approahis applied then inreasing the size of the system an
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