Co-Allocation, Fault Tolerance and Grid Computing

Jon MacLaren,! Mark Mc Keown,? and Stephen Pickles?

1 Center for Computation and Technology, Louisiana State University,
Baton Rouge, Louisiana 70803, United States.
2 Manchester Computing, The University of Manchester, Ozford Road, Manchester M13 9PL.

Experience gained from the TeraGyroid and SPICE projects has shown that co-allocation and fault
tolerance are important requirements for Grid computing. Co-allocation is necessary for distributed
applications that require multiple resources that must be reserved before use. Fault tolerance is
important because a computational Grid will always have faulty components and some of those
faults may be Byzantine. We present HARC, Highly-Available Robust Co-allocator, an approach to
building fault tolerant co-allocation services. HARC is designed according to the REST architectural
style and uses the Paxos and Paxos Commit algorithms to provide fault tolerance. HARC/1, an
implementation of HARC using HTTP and XML, has been demonstrated at SuperComputing 2005

and iGrid 2005.
I. INTRODUCTION

In this paper we discuss the importance of co-
allocation to Grid computing. We provide some
background on the difficulties associated with co-
allocation before presenting HARC, Highly-Available
Robust Co-allocator, a fault tolerant approach to co-
allocation. The paper also includes a discussion on
the problem of fault tolerance and Grid computing.
We make the case that a computational Grid will al-
ways have faulty components and that some of those
faults will be Byzantine [26, 27]. However, we also
demonstrate that with suitable approaches it is still
possible to make a computational Grid a fault toler-
ant system.

There are many definitions of Grid computing but
recurring themes are: large scale or internet scale
distributed computing and sharing resources across
multiple administrative domains. The goal of shar-
ing resources between organizations dates back to the
ARPANET [33] project and progress towards that
goal can be seen in the development of the Internet,
the World Wide Web [22] and now computational
Grids. While the goals of the ARPANET project
are still relevant today the underlying infrastructure
has changed, powerful computers have become cheap
and plentiful while high performance networks have
become pervasive, presenting developers with a dif-
ferent set of challenges and opportunities. We be-
lieve that co-allocation is a new challenge, while the
falling cost of components makes fault tolerance a
new opportunity.

Parallel to the evolution of ARPANET through
to Grid computing has been the development of the
theory of distributed systems providing us with a
deeper understanding of distributed systems and a
set of algorithms for building fault tolerant systems.
Representational State Transfer [12], REST, is an ar-
chitectural style for building large scale distributed
systems that was used to develop the protocols that

make up the World Wide Web. Paxos [28] is a
fault tolerant consensus algorithm that can be used
to build highly available systems [31]. Paxos Com-
mit [18] is Paxos applied to the distributed transac-
tion commit problem.

HARC uses REST and Paxos to provide a sys-
tem that is fault tolerant and suitable for a large
scale distributed system such as a computational
Grid. HARC’s focus on fault tolerance is unique
among approaches to designing co-allocation ser-
vices [3, 9, 24, 34, 39].

II. CO-ALLOCATION

Running distributed applications on a computa-
tional Grid often requires that the resources needed
by the application are available at the same time.
The resources may need to be booked (eg Access
Grid nodes) or they may use a batch submission sys-
tem (eg HPC systems). We define co-allocation as
the provision of a set of resources at the same time
or at some co-ordinated set of times. Co-allocation
can be achieved by making a set of reservations for
the required resources with the respective resource
providers.

Experience from the award winning TeraGyroid [7]
and SPICE [23] projects has shown that support for
co-allocation on current production Grids [37, 38] is
ad-hoc and often requires time consuming direct ne-
gotiation with the resource administrators. The re-
sources required by TeraGyroid and SPICE included
HPC systems, special high performance networks,
high end visualization systems, Access Grid nodes,
haptic devices and people. The lack of convenient
co-allocation services prevents the routine use of
the techniques pioneered by TeraGyroid and SPICE.
Without co-allocation computational Grids are lim-
ited in the type of applications they can support, and
so are limited in their potential. Co-allocation’s im-

portance to Grid computing means that it must be
a reliable service.

III. FAULT TOLERANCE AND GRID
COMPUTING

Whatever definition of Grid computing is used we
are lead to two inescapable conclusions: a computa-
tional Grid will always have faulty components and
some of those faults will be Byzantine.

Computational Grids are internet scale distributed
systems, implying large numbers of components and
wide area networks. At this scale there will always
be faulty components.

The case that a computational Grid will always
have faulty components is illustrated by the fact that
on average over ten percent of the daily operational
monitoring tests, GITS [4], run on the UK National
Grid Service, UK NGS [38], report failures. Since the
start of the UK NGS a number of the core nodes have
been unavailable for days at a time due to planned
and unplanned maintenance.

Crossing administrative boundaries raises issues of
trust: Can a user trust that a resource provider has
configured and administrates the resource properly?
Can a resource provider trust that a user will use
the resource correctly? Distributed transactions are
rarely used between organizations because of a lack
of trust; one organization will not allow another or-
ganization to hold a lock on its internal databases.
Without trust users, resource providers and middle-
ware developers must be prepared for Byzantine fault
behaviour: when a component faults but continues
to operate in an unpredictable and potentially ma-
licious way. Although Grid computing supports the
creation of limited trust relationships between orga-
nizations through the concept of the Virtual Organi-
zation [14] our experience has been that Grids exhibit
Byzantine fault behaviour.

To illustrate the point we provide three exam-
ples of Byzantine behaviour which we have encoun-
tered. The first case involved the UK eScience Grid’s
MDS2 [2, 10] hierarchy. A GRIS [10] at a site
was firewalled preventing GIIS [10] higher up in the
MDS2 hierarchy from querying it. The GRIS contin-
ued to report that it was publishing information but
whenever a GIIS attempted to query it the firewall
would block the connection. The GIIS would block
waiting for the GRIS to respond causing the whole
MDS2 hierarchy to block. The firewall was raised by
the site’s network administrators. The local firewall
on the GRIS server and the GRIS service itself were
configured correctly.

The second case involved a job submission node
on the TeraGrid [37]. The node consisted of two
servers and utilized a DNS round robin to allocate

2

requests to a node. Unfortunately the DNS entries
were mis-configured and reported the wrong host-
name for one of the nodes causing job submissions
to fail randomly. Local testing at the site did not
reveal the problem.

The third case involved a resource broker that as-
signed jobs to computational resources. Occasionally
a computational resource would fail in a Byzantine
way: it would accept jobs from the resource broker,
fail to execute the job but report to the resource
broker that the job had completed successfully. The
resource broker would continue assigning jobs to the
faulty resource until it was drained of jobs.

The examples illustrate the importance of end-to-
end arguments in system design €rror recovery
at the application level is absolutely necessary for
a reliable system, and any other error detection or
recovery is not logically necessary but is strictly for
performance [35]. In each case making the individual
components more reliable would not have prevented
the problem. Retrofitting reliability to an existing
design is very difficult [30].

For co-allocation a very real example of Byzantine
fault behaviour occurs when a resource provider ac-
cepts a reservation for a resource but at the scheduled
time the user, and possibly the resource provider,
discover the resource is unavailable.

IV. REST

REST is an architectural style for building large
scale distributed systems. It consists of a set of prin-
ciples and design constraints which were used in de-
signing the protocols that make up the World Wide
Web.

We provide a brief description of REST and re-
fer the reader to the thesis [12] for a complete de-
scription. REST is based on a client-server model
which supports caching and where interactions be-
tween client and server are stateless, all interaction
state is stored on the client for server scalability. The
concept of a resource is central to REST, resources
have identity and anything that can have an iden-
tity can be a resource. Resources are manipulated
through their representations and are networked to-
gether through linking hypermedia is the engine
of application state. Together the last set of con-
straints combine to make up the principle of uniform
interface. REST also has an optional constraint for
the support of mobile code.

HTTP [11] is an example of a protocol that has
been designed according to REST. On the World
Wide Web a resource is identified by a URI [6] and
clients can retrieve a representation of the resource
using a HTTP GET. HTTP can also supply caching
information along with the representation to allow

intermediaries to cache the representation. The rep-
resentation may contain links to other resources cre-
ating a network of resources. Clients can change the
representation of a resource by replacing the exist-
ing representation with a new one, for example us-
ing a HTTP PUT. All resources on the World Wide
Web have a uniform interface allowing generic pieces
of software such as web browsers to interact with
them. Web servers are also able to send code, for
example JavaScript, to the client to be executed in
the browser.

V. PROBLEMS OF CO-ALLOCATION

To illustrate the problems associated with co-
allocation we present two possible approaches and
discuss their shortcomings. Most existing solu-
tions [3, 9, 24, 34, 39| for co-allocation are based
on variations of these approaches.

A. One Phase Approach

In this approach a successful reservation is made
in a single step.

The user sends a booking request to each of the
Resource Managers (RM) requesting a reservation.
The RMs either accept or reject the booking. If one
or more of the RMs rejects the booking the user must
cancel any other bookings that have been made. This
approach has the advantage of being simple but a
potential drawback is that the user may be charged
each time he cancels a reservation.

Supporting reservations prevents a RM from run-
ning the optimal workload on a resource as it has to
schedule around the reservations. Even if a reserva-
tion is cancelled before the scheduled time it may al-
ready have delayed execution of some jobs. RMs may
charge for the use of the resource and may charge
more for jobs that are submitted via reservation to
compensate for the loss in throughput. They may
also charge for reservations that are cancelled.

Any charging policy is the prerogative of the RM.
Not all RMs may charge and it is unreasonable to
make any assumptions about or try to mandate a
charging policy. A co-allocation protocol should ac-
commodate the issues associated with charging but
cannot, depend on RMs supporting charging.

Another potential problem with this approach
arises if one of the RMs rejects a booking but the
user does not cancel the other reservations that have
been made. For example the user may fail before he
has had a chance to cancel the reservations. Even if
the user recovers he may not have stored sufficient
state before failing to cancel the reservations. This

Initial
State
Booking
Held
Commit
Booking
Committed

FIG. 1: The state-transition diagram for a RM in the
two phase approach. The RM receives the booking re-
quest message in the initial state. It can either reject the
request and move to the booking rejected state or accept
the request and move to the Booking Held state. The
RM waits in the Booking Held state until it receives the
Commit or Abort message from the TM.

Abort

is related to the question of trust — the RMs must
trust the user to cancel any unwanted reservations.

A partial solution is to add an intermediary ser-
vice that is trusted by the user and RM to correctly
make and cancel reservations as necessary. The user
sends the set of bookings he requires to the inter-
mediary which handles all the interactions with the
RMs, cancelling all the reservations if the purposed
schedule is unacceptable to any of the RMs. The in-
termediary is still a single point of failure unless it
can be replicated.

B. Two Phase Approach

In this approach a successful reservation is made
in two steps.

To resolve the problem of RMs charging for can-
celling a reservation we introduce a new state for the
RM, Booking Held. The client can cancel a reserva-
tion in the Booking Held state without being charged.
The approach is similar to the two phase commit [17]
algorithm for distributed transactions but does not
necessarily have the ACID (Atomicity, Consistency,
Isolation and Durability [19]) properties associated
with two phase commit.

A process, the Transaction Manager (TM), tries
to get a group of RMs to accept or reject a set of
reservations. In the first phase the TM sends the
booking requests to the RMs, the RMs reply with a
Booking Held message if the request is acceptable or
an Abort message if the request is unacceptable. If
all the RMs reply with Booking Held the TM sends
a Commit message to the RMs and the reservations
are committed. Otherwise the TM sends an Abort
message to the RMs and no reservations are made.

Fig. 1 shows the state transitions for the RM in the
two phase approach.

Unfortunately the two phase approach can block.
If the TM fails after the first phase but before start-
ing the second phase, before sending the Commit or
Abort message, the RMs are left in the Booking Held
state until the TM recovers. While in the Booking
Held state the RMs may be unable to accept reser-
vations for the scheduled time slot and the resource
scheduler may be unable to run the optimal work
load on the resource.

The blocking nature of the two phase approach
may be acceptable for certain scenarios depending
on how long the TM is unavailable and providing it
recovers correctly. To overcome the blocking nature
of the two phase approach requires a three phase
protocol [36] such as Paxos.

Another potential problem with the two phase ap-
proach is that RMs must support the Booking Held
state. A solution is for RMs that do not support the
Booking Held state to move straight to the Booking
Committed state if the booking request is acceptable
in the first phase. For the second phase they can ig-
nore a Commit message and treat an Abort message
as a cancellation of the reservation for which the user
may be charged. This a relaxation of the consistency
property of two phase commit.

It is also possible to relax the isolation property
of two phase commit. If a RM receives a booking
request while in the Booking Held state it can reject
the request, advising the client that it is holding an
uncommitted booking which may be released in the
future. This prevents deadlock [19], when two users
request the same resources at the same time.

The role of the TM can be played by the user but
should be carried out by a trusted intermediary ser-
vice.

VI. CO-ALLOCATION AND CONSENSUS

Co-allocation is a consensus problem. Consensus
is concerned with how to get a set of processes to
agree a value [26]. Distributed transaction commit,
of which two phase commit is one approach, is a
special case of consensus were all the processes must
agree on either commit or abort for a transaction.
In the case of co-allocation the RMs must agree to
either accept or reject a purposed schedule.

Consensus is a well understood problem with over
twenty five years of research [13, 26-28]. For exam-
ple it has been shown that distributed consensus is
impossible in an asynchronous system with a perfect
network and just one faulty processor [13]. In an
asynchronous system it is impossible to differentiate
between a processor that is very slow and one that
has failed. To handle faults requires either fault de-

4

tectors or partial synchrony. Consensus is an impor-
tant problem because it can be used to build repli-
cas: start a set of deterministic state machines in the
same state and use consensus to make them agree on
the order of messages to process [25, 31].

Paxos is a well known fault tolerant consensus al-
gorithm. We present only a description of its proper-
ties and refer the reader to the literature [28, 29, 31]
for a full description of the algorithm. In Paxos a
leader process tries to guide a set of acceptor pro-
cesses to agree a value. Paxos will reach consensus
even if messages are lost, delayed or duplicated. It
can tolerate multiple simultaneous leaders and any
of the processes, leader or acceptor, can fail and re-
cover multiple times. Consensus is reached if there is
a single leader for a long enough time during which
the leader can talk to a majority of the acceptor pro-
cesses twice. It may not terminate if there are always
too many leaders. There is also a Byzantine version
of Paxos [8] to handle the case were acceptors may
have Byzantine faults.

Paxos Commit [18] is the Paxos algorithm applied
to the distributed transaction commit problem. Ef-
fectively the transaction manager of two phase com-
mit is replaced by a group of acceptors — if a ma-
jority of acceptors are available for long enough the
transaction will complete. Gray and Lamport [18]
showed that Paxos Commit is efficient and has the
same message delay as two phase commit for the
fault free case. They also showed that two phase
commit is Paxos Commit with only one acceptor.

Though it may be possible to apply Paxos directly
to the co-allocation problem by having the RMs act
as acceptors we chose to use Paxos Commit instead.
The advantage Paxos Commit has over using Paxos
directly for co-allocation is that the role played by
the RMs is no more complex than in the two phase
approach. Limiting the role of the RM makes it more
acceptable to resource providers and reduces the pos-
sibilities for faulty behaviour from the RM.

VII. HARC

The HARC approach to co-allocation is similar to
the two phase approach described in Section II ex-
cept the TM is replaced with a set of Paxos accep-
tors. The user sends a booking request to an acceptor
who first replicates the message to the other accep-
tors using Paxos and then it uses Paxos Commit to
make the reservations with the RMs. HARC termi-
nates once it has decided to commit or abort a set of
reservations. Users and RMs may modify or cancel
reservations after HARC has terminated, but this is
outside the scope of HARC.

The aims of HARC are deliberately limited. It
does not address the issues of how to choose the op-

timal schedule; how to manage a set of reservations
once they have been made; how to negotiate qual-
ity of service with the resource provider or how to
support compensation mechanisms when a resource
fails to fulfil a reservation or when a user cancels a
reservation. HARC is designed so that other services
and protocols can be combined with it to solve these
problems.

A. Choosing a Schedule

The RM advertises the schedule when a resource
may be available through a URI. The user retrieves
the schedule using a HI'TP GET. The information
retrieved is for guidance only, the RM is under no
obligation by advertising it. It is the RM’s prerog-
ative as to how much information it makes avail-
able, it may choose not to advertise a schedule at
all. The RM may supply caching information along
with the schedule using the cache support facilities of
HTTP. The caching information can indicate when
the schedule was last modified or how long the sched-
ule is good for. The RM may also support condi-
tional GET [11] so that clients do not have to re-
trieve and parse the schedule if it hasn’t changed
since the last retrieval. From the schedules for all
the resources the user chooses a suitable time when
the resources he requires might be free.

A co-scheduling service for HARC could use
HTTP conditional GET to maintain a cache of re-
source schedules from which to create co-schedules
for the user. The co-scheduling service would have
to store only soft state making it easy to replicate.

B. Submitting the Booking Request

The user constructs a booking request which con-
tains a sub-request for each resource that he wants to
reserve. The booking request also contains an iden-
tifier chosen by the user, the UID. The combination
of the identity of the user and the UID should be
globally unique. The user sends the booking request
to an acceptor using a HTTP POST. This acceptor
will act as the leader for the whole booking process
unless it fails in which case another acceptor will take
over.

The leader picks a transaction identifier, the TID,
for the booking request from a set of TIDs that it
has been initially assigned. Each acceptor has a dif-
ferent range of TIDs to choose from to prevent two
acceptors trying to use the same TID. The acceptor
effectively replicates the message to the other accep-
tors by having Paxos agree the TID for the message.
This instance of Paxos agrees a TID for the combina-
tion of the user’s identity and the user chosen UID.

5

If the user resends the message to the acceptor or to
any other acceptor he will receive the same TID.

The user should continue submitting the request
to any of the acceptors until he receives a TID
the submission of the booking request is idempotent
across all the acceptors.

If a user reuses a UID he will get the TID of the
previous booking request associated with that UID.
To avoid reusing a UID the user can record all the
UIDs he has previously used, however a more prac-
tical approach is to randomly choose a UID from a
large namespace. Two users can use the same UID
as it is the combination of the user’s identity and the
UID that is relevant.

The TID is a RequestURI [11]. The user can use a
HTTP GET with the TID to retrieve the outcome of
the booking request from any of the acceptors. The
TID is returned to user using the HTTP Location
header in the response to the POST containing the
booking request. The HTTP response code is 201
indicating that a new resource has been created. The
acceptor should return a 303 HTTP response code if
a TID has already been chosen for the request to
allow the user to detect the case when a UID may
have been reused.

C. Making the Reservations

After the TID has been chosen the leader uses
Paxos Commit to make the bookings with the RMs.

The booking request is broken down into the sub-
requests and the sub-requests are sent to the appro-
priate RM using HTTP POST. The TID is also sent
to the RM as the Referer HTTP header in the POST
message.

The RM responds with a URI that will represent
the booking local to the RM and whether the book-
ing is being held or has been rejected. It also broad-
casts this message to all the other acceptors.

As in the Paxos Commit algorithm the acceptors
decide whether the schedule chosen by the user is
acceptable to all the RMs or has been rejected by any
of the RMs. The leader informs each RM whether
to commit or abort the booking using a HIT'TP PUT
on the URI provided by the RM.

It is the RM’s obligation to discover the outcome
of the booking. If the RM does not receive the com-
mit or abort message it should use a HITP GET
with the TID on any of the acceptors to discover the
outcome of the booking. Once the acceptors have
made a decision it can be cached by intermediaries.

A HTTP GET on the TID returns the outcome of
the booking request and a set of links to the reser-
vations local to each RM. Detailed information on a
reservation at a particular RM can be retrieved by

using a HTTP GET on the link associated with that
reservation.

The user can cancel the reservation through the
URI provided by the RM and the RM can adver-
tise that it has cancelled the reservation using the
same URI. The user should poll the URI to monitor
the status of the reservation, HTTP HEAD or con-
ditional GET can be used to optimize the polling.

There is a question of what happens if a RM de-
cides to unilaterally abort from the Booking Held
state which is not allowed in two phase commit or
Paxos Commit. Since HARC terminates when it
decides whether a schedule should be committed or
aborted we can say that the RM cancelled the reser-
vation after HARC terminated. This is possible be-
cause there is only a partial ordering of events in a
distributed system [25]. The user can only find out
that the RM cancelled the reservation after HARC
terminated. The onus is on the user to monitor the
reservations once they have been made and to deal
with any eventualities that may arise.

D. HARC Actions

HARC supports a set of actions for making and
manipulating reservations: Make, Modify, Move and
Cancel. Make is used to create a new reserva-
tion, Modify to change an existing reservation (eg
to change the number of CPUs requested), Move to
change the time of a reservation and Cancel to can-
cel a reservation. A booking request can contain a
mixture of actions and HARC will decide whether
to commit or abort all of the actions. The HARC
actions provide the user with flexibility for dealing
with the case of a RM cancelling a reservation, for
example he could make a new reservation on another
resource at a different time and move the existing
reservations to the new time.

A third party service could monitor reservations on
the behalf of the user and deal with any eventualities
that arise using the HARC actions in accordance to
some policy provided by the user.

E. Security

The complete booking request sent to the acceptor
is digitally signed [5] by the user with a X.509 [1] cer-
tificate. The acceptors use the signature to discover
the identity of the user. Individual sub-requests are
also digitally signed by the user so that the RMs
can verify that the sub-request came from an au-
thorized user. The acceptors also digitally sign the
sub-requests before passing them to the RMs so that
the RM can verify that the sub-request came from
a trusted acceptor. If required a sub-request can be

6

digitally encrypted [21] by the user so that the ac-
ceptors cannot read it.

A HTTP GET using the TID returns only the out-
come of a booking request and a set of links to the
individual bookings so there is no requirement for ac-
ceptors to provide access control to this information.
The individual RMs control access to any detailed
information on reservations they hold.

VIII. HARC AVAILABILITY

HARC has the same fault tolerance properties as
Paxos Commit which means it will progress if a ma-
jority of acceptors are available. If a majority of
acceptors are not available HARC will block until a
majority is restored, since blocking is unacceptable
we define this as HARC failing. To calculate the
MTTF for HARC we use the notation and defini-
tions from [19].

The probability that an acceptor fails is 1/ MTTF
were MTTF is the Mean Time To Failure of the ac-
ceptor. The probability that an acceptor is in a failed
state is approximately MTTR/MTTF, were MTTR
is the Mean Time To Repair of the acceptor.

Given 2F 4+ 1 acceptors, the probability that
HARC blocks is the probability that F' acceptors are
in the failed state and another acceptors fails.

The probability that F' out of the 2F +1 acceptors
are in the failed state is:

(2F +1)! (MTTR\"
FI(F+1)! \MTTF

(1)

The probability that one of the remaining F' + 1 ac-
ceptors fails is:

(F+1) (M%TF) 2)

The probability that HARC will block is the product
of (1) and (2):
(2F +1)! { MTTRF
(F)? MTTFF+!
The MTTF for HARC is the reciprocal of (3):
(F1)2 MTTFF+! (4)
(2F +1)! \' MTTRF

Using 5 acceptors, F' = 2, each with a MTTF of 120
days and a MTTR of 1 day, MTT Fy oArc is approx-
imately 57,600 days, or 160 years.

3)

MTTFHARC ~

IX. BYZANTINE FAULTS AND HARC

HARC is based on Paxos Commit which assumes
the acceptors do not have Byzantine faults but which

can happen in a Grid environment. We believe that
acceptors can be implemented as fail-stop [19] ser-
vices that are provided as part of a Virtual Organi-
zation’s role of creating trust between organizations.
Provision of trusted services is one way of realizing
the Virtual Organization concept. If Byzantine fault
tolerance is necessary then Byzantine Paxos [8] could
be used in HARC.

If a HARC acceptor does have a Byzantine fault it
cannot make a reservation without a signed request
from a user. HARC has been designed to deal with
Byzantine fault behaviour from users and RMs.

No co-allocation protocol can guarantee that the
reserved resources will actually be available at the
scheduled time. HARC is a fault tolerant protocol
for making a set of reservations, it does not attempt
to make any guarantees once the reservations have
been made. The user may be able to deal with the
situation were a resource is unavailable at the sched-
uled time by booking extra resources that can act as
backup. This is an application specific solution and
again illustrates the importance of end-to-end argu-
ments [35]. HARC provides a fault tolerant service
to the user but fault tolerance is still necessary at
the application level.

X. HARC/1

HARC/1, an implementation of HARC, has been
successfully demonstrated at SuperComputing 2005
and iGrid 2005 [20] where it was used to co-schedule
ten compute and two network resources. HARC/1
is implemented using Java with sample RMs imple-
mented in Perl. HARC/1 is available at http://
www.cct.lsu.edu/personal/maclaren/CoSched.

XI. CONCLUSION

As the size of a distributed system increases so to
does the probablity that some component in the sys-
tem is faulty. However, if a fault tolerant approach
is applied then increasing the size of the system can

7

mean that the reliability of the overall system im-
proves. Just as Beowulf systems built out of com-
modity components have displaced expensive super-
computers so clusters of PCs are displacing expensive
mainframe type systems [15]. HARC demonstrates
how important services can be made fault tolerant
to create a fault tolerant Grid.

HARC has been demonstrated to be a secure, fault
tolerant approach to building co-allocation services.
It has also been shown that the user and RM roles in
HARC are simple. The state—transitions for the RM
in HARC are the same as for the two phase approach
illustrated in Fig. 1. The only extra requirement
for the RM over the two phase approach is that it
must broadcast a copy of its Booking Held or Abort
message to all acceptors.

The use of HTTP contributes to the simplicity of
HARC. HTTP is a well understood application pro-
tocol with strong library support in many program-
ming languages. HARC demonstrates through its
use of HT'TP and URISs the effectiveness of REST as
an approach to developing Grid services.

HARC'’s functionality can be extended by adding
other services, for example to support co-scheduling
and reservation monitoring. Extending functionality
by adding services, rather than modifying existing
services, indicates good design and a scalable system
in accordance to REST.

The opaqueness of the sub-requests to the accep-
tors means that HARC has the potential to be used
for something other than co-allocation. For example
a HARC implementation could be used as an imple-
mentation of Paxos Commit to support distributed
transactions.

XII. ACKNOWLEDGEMENTS

The authors would like to thank Jim Gray, Savas
Parastatidis and Dean Kuo for discussion and en-
couragement. The work is supported in part through
NSF Award #0509465, "EnLIGHTened Comput-

ing".

[1] C. Adams and S. Farrell. Internet X.509 Public
Key Infrastructure Certificate Management Proto-
cols. IETF RFC 2510, 1999.

[2] R. Allan et al. Building the e-Science Grid in the
UK: Grid Information Services. Proceedings of UK
e-Science All Hands Meeting. 2003.

[3] A. Andrieux et al. Web Services Agreement. Draft
GGF Recommendation, September 2005.

[4] D. Baker and M. Mc Keown. Building the e-Science
Grid in the UK: Providing a software toolkit to en-

able operational monitoring and Grid integration.
Proceedings of UK e-Science All Hands Meeting.
2003.

[5] M. Bartel et al. XML-Signature Syntax and Process-
ing. W3C Recommendation, February 2002.

[6] T. Berners-Lee, R. Fielding and L. Masinter. Uni-
form Resource Identifier (URI): Generic Syntax.
IETF RFC 3986, 2005.

[7] R. Blake et al. The teragyroid experiment—
supercomputing 2003. Scientific =~ Computing,

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

13(1):1-17, 2005.

M. Castro and B. Liskov. Practical Byzantine fault
tolerance. Proceedings of 3rd OSDI, New Orleans,
1999.

K. Czajkowski et al. A protocol for negotiating
service level agreements and coordinating resource
management on distributed systems. Proceedings
of 8th International Workshop on Job Scheduling
Strategies for Parallel Processing, eds D Feitelson,
L. Rudolph and U. Schwiegelshohn, Lecture Notes
in Computer Science, 2537, Springer Verlag, 2002.
K. Czajkowski et al. Grid Information Services for
Distributed Resource Sharing. Proceedings of the
Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10),
IEEE Press, 2001.

R. Fielding et al. Hypertext Transfer Protocol —
HTTP/1.1, IETF RFC 2616, 1999.

R. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis.
University of California, Irvine, 2000.

M. Fischer, N. Lynch, and M. Paterson. Impossibil-
ity of distributed consensus with one faulty process.
Journal of the ACM, 32(2), 1985.

I. Foster, C. Kesselman and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organiza-
tions. International J. Supercomputer Applications,
15(3), 2001.

S. Ghemawat, H. Gobioff, and S. Leung. The Google
Filesystem. 19th ACM Symposium on Operating
Systems Principles, Lake George, NY, October,
2003.

M. Gudgin et al. SOAP Version 1.2 Part 1: Messag-
ing Framework. W3C Recommendation, June 2003.
J. Gray. Notes on data base operating systems. In
R. Bayer, R. Graham, and G. Seegmuller, editors,
Operating Systems: An Advanced Course, volume
60 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, New York, 1978.

J. Gray and L. Lamport. Consensus on Transac-
tion Commit. Microsoft Research Technical Report
MSR-TR-2003-96, 2005.

J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1992.

A. Hutanu et al. Distributed and collaborative vi-
sualization of large data sets using high-speed net-
works. Submitted to proceedings of iGrid 2005, Fu-
ture Generation Computer Systems. The Interna-
tional Journal of Grid Computing: Theory, Methods
and Applications, 2005.

T. Imamura, B. Dillaway and E. Simon. XML En-
cryption Syntax and Processing. W3C Recommen-
dation, December 2002.

I. Jacobs and N. Walsh. Architecture of the World
Wide Web, Volume One. W3C Recommendation,
December 2004.

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

8

S. Jha et al. Spice: Simulated pore interactive com-
puting environment — using grid computing to un-
derstand dna translocation across protein nanopores
embedded in lipid membranes. Proceedings of the
UK e-Science All Hands Meetings, 2005.

D. Kuo and M. Mc Keown. Advance reservation
and co-allocation for Grid Computing. In First In-
ternational Conference on e-Science and Grid Com-
puting, volume e-science, IEEE Computer Society
Press, 2005.

L. Lamport. Time, Clocks and the Ordering of
Events in a Distributed System. Communications of
the ACM 21, 7, 1978.

L. Lamport, M. Pease and R. Shostak. Reaching
Agreement in the Presence of Faults. Journal of the
Association for Computing Machinery 27, 2, 1980.
L. Lamport, M. Pease and R. Shostak. The Byzan-
tine Generals Problem. ACM Transactions on Pro-
gramming Languages and Systems 4, 3, 382-401,
1982.

L. Lamport. The Part-Time Parliament. ACM
Transactions on Computer Systems 16, 2, 133-169,
1998.

L. Lamport. Paxos Made Simple. ACM SIGACT
News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001) 18-25, 2001.
B. Lampson. Hints for computer system design.
ACM Operating Systems Rev. 17, 5, pp 33-48, 1983.
B. Lampson. How to build a highly available sys-
tem using consensus. In Distributed Algorithms, ed.
Babaoglu and Marzullo, Lecture Notes in Computer
Science 1151, Springer, 1996

E. Rescorla. HTTP Over TLS. IETF RFC 2818,
2000.

L. Roberts. Resource Sharing Computer Networks.
IEEE International Conference, New York City.
1968.

A. Roy. End-to-End Quality of Service for High-end
Applications. PhD thesis. University Of Chicago,
Illinois, 2001.

J. Saltzer, D. Reed and D. Clark. End-to-end argu-
ments in system design. Proceedings of the 2nd In-
ternational Conference Distributed Computing Sys-
tems, Paris, 1981.

D. Skeen. Nonblocking commit protocols. In SIG-
MOD ’81: Proceedings of the 1981 ACM SIGMOD
International Conference on Management of Data.
ACM Press, 1981.

TeraGrid. http://www.teragrid.org/.

UK National Grid Service. http://wuw.ngs.ac.uk/.
K. Yoshimoto, P. Kovatch and P. Andrews. Co-
scheduling with user settable reservations. In Job
Scheduling Strategies for Parallel Processing, eds E.
Frachtenberg, L. Rudolph and U. Schwiegelshohn,
Lecture Notes in Computing Science, 3834, Springer,
2005.

	Abstract
	I. Introduction
	II. Co-Allocation
	III. Fault Tolerance and Grid Computing
	IV. Rest
	V. Problems of co-allocation
	A. One Phase Approach
	B. Two Phase Approach

	VI. Co-allocation and consensus
	VII. HARC
	A. Choosing a Schedule
	B. Submitting the Booking Request
	C. Making the Reservations
	D. HARC Actions
	E. Security

	VIII. HARC Availability
	IX. Byzantine Faults and HARC
	X. HARC/1
	XI. Conclusion
	XII. Acknowledgements
	References

